29 research outputs found

    Term Graph Representations for Cyclic Lambda-Terms

    Full text link
    We study various representations for cyclic lambda-terms as higher-order or as first-order term graphs. We focus on the relation between `lambda-higher-order term graphs' (lambda-ho-term-graphs), which are first-order term graphs endowed with a well-behaved scope function, and their representations as `lambda-term-graphs', which are plain first-order term graphs with scope-delimiter vertices that meet certain scoping requirements. Specifically we tackle the question: Which class of first-order term graphs admits a faithful embedding of lambda-ho-term-graphs in the sense that: (i) the homomorphism-based sharing-order on lambda-ho-term-graphs is preserved and reflected, and (ii) the image of the embedding corresponds closely to a natural class (of lambda-term-graphs) that is closed under homomorphism? We systematically examine whether a number of classes of lambda-term-graphs have this property, and we find a particular class of lambda-term-graphs that satisfies this criterion. Term graphs of this class are built from application, abstraction, variable, and scope-delimiter vertices, and have the characteristic feature that the latter two kinds of vertices have back-links to the corresponding abstraction. This result puts a handle on the concept of subterm sharing for higher-order term graphs, both theoretically and algorithmically: We obtain an easily implementable method for obtaining the maximally shared form of lambda-ho-term-graphs. Also, we open up the possibility to pull back properties from first-order term graphs to lambda-ho-term-graphs. In fact we prove this for the property of the sharing-order successors of a given term graph to be a complete lattice with respect to the sharing order. This report extends the paper with the same title (http://arxiv.org/abs/1302.6338v1) in the proceedings of the workshop TERMGRAPH 2013.Comment: 35 pages. report extending proceedings article on arXiv:1302.6338 (changes with respect to version v2: added section 8, modified Proposition 2.4, added Remark 2.5, added Corollary 7.11, modified figures in the conclusion

    Nested Term Graphs (Work In Progress)

    Full text link
    We report on work in progress on 'nested term graphs' for formalizing higher-order terms (e.g. finite or infinite lambda-terms), including those expressing recursion (e.g. terms in the lambda-calculus with letrec). The idea is to represent the nested scope structure of a higher-order term by a nested structure of term graphs. Based on a signature that is partitioned into atomic and nested function symbols, we define nested term graphs both in a functional representation, as tree-like recursive graph specifications that associate nested symbols with usual term graphs, and in a structural representation, as enriched term graph structures. These definitions induce corresponding notions of bisimulation between nested term graphs. Our main result states that nested term graphs can be implemented faithfully by first-order term graphs. keywords: higher-order term graphs, context-free grammars, cyclic lambda-terms, higher-order rewrite systemsComment: In Proceedings TERMGRAPH 2014, arXiv:1505.0681

    The Image of the Process Interpretation of Regular Expressions is Not Closed under Bisimulation Collapse

    Full text link
    Axiomatization and expressibility problems for Milner's process semantics (1984) of regular expressions modulo bisimilarity have turned out to be difficult for the full class of expressions with deadlock 0 and empty step~1. We report on a phenomenon that arises from the added presence of 1 when 0 is available, and that brings a crucial reason for this difficulty into focus. To wit, while interpretations of 1-free regular expressions are closed under bisimulation collapse, this is not the case for the interpretations of arbitrary regular expressions. Process graph interpretations of 1-free regular expressions satisfy the loop existence and elimination property LEE, which is preserved under bisimulation collapse. These features of LEE were applied for showing that an equational proof system for 1-free regular expressions modulo bisimilarity is complete, and that it is decidable in polynomial time whether a process graph is bisimilar to the interpretation of a 1-free regular expression. While interpretations of regular expressions do not satisfy the property LEE in general, we show that LEE can be recovered by refined interpretations as graphs with 1-transitions refined interpretations with 1-transitions (which are similar to silent steps for automata). This suggests that LEE can be expedient also for the general axiomatization and expressibility problems. But a new phenomenon emerges that needs to be addressed: the property of a process graph `to can be refined into a process graph with 1-transitions and with LEE' is not preserved under bisimulation collapse. We provide a 10-vertex graph with two 1-transitions that satisfies LEE, and in which a pair of bisimilar vertices cannot be collapsed on to each other while preserving the refinement property. This implies that the image of the process interpretation of regular expressions is not closed under bisimulation collapse.Comment: Report (14 p. + 10 p. app) written for a submission in Jan 2021 (now with added explanation of relation with subsequent work that was published earlier) concerning the crucial observation underlying the crystallization process in arXiv:2209.12188 version 2: extension of Prop. 2.12 to "under star 1-free" expressions, and correction in its proof (added termination subterm to extraction function

    Milner's Proof System for Regular Expressions Modulo Bisimilarity is Complete (Crystallization: Near-Collapsing Process Graph Interpretations of Regular Expressions)

    Full text link
    Milner (1984) defined a process semantics for regular expressions. He formulated a sound proof system for bisimilarity of process interpretations of regular expressions, and asked whether this system is complete. We report conceptually on a proof that shows that Milner's system is complete, by motivating, illustrating, and describing all of its main steps. We substantially refine the completeness proof by Grabmayer and Fokkink (2020) for the restriction of Milner's system to `1-free' regular expressions. As a crucial complication we recognize that process graphs with empty-step transitions that satisfy the layered loop-existence/elimination property LLEE are not closed under bisimulation collapse (unlike process graphs with LLEE that only have proper-step transitions). We circumnavigate this obstacle by defining a LLEE-preserving `crystallization procedure' for such process graphs. By that we obtain `near-collapsed' process graphs with LLEE whose strongly connected components are either collapsed or of `twin-crystal' shape. Such near-collapsed process graphs guarantee provable solutions for bisimulation collapses of process interpretations of regular expressions.Comment: Version article submitted to LICS 2022 (with some corrections performed already during the review process, a few afterwards, 14 pages, 2 pages of the appendix

    Regularity Preserving but not Reflecting Encodings

    Full text link
    Encodings, that is, injective functions from words to words, have been studied extensively in several settings. In computability theory the notion of encoding is crucial for defining computability on arbitrary domains, as well as for comparing the power of models of computation. In language theory much attention has been devoted to regularity preserving functions. A natural question arising in these contexts is: Is there a bijective encoding such that its image function preserves regularity of languages, but its pre-image function does not? Our main result answers this question in the affirmative: For every countable class C of languages there exists a bijective encoding f such that for every language L in C its image f[L] is regular. Our construction of such encodings has several noteworthy consequences. Firstly, anomalies arise when models of computation are compared with respect to a known concept of implementation that is based on encodings which are not required to be computable: Every countable decision model can be implemented, in this sense, by finite-state automata, even via bijective encodings. Hence deterministic finite-state automata would be equally powerful as Turing machine deciders. A second consequence concerns the recognizability of sets of natural numbers via number representations and finite automata. A set of numbers is said to be recognizable with respect to a representation if an automaton accepts the language of representations. Our result entails that there is one number representation with respect to which every recursive set is recognizable

    Expressibility in the Lambda Calculus with Letrec

    Get PDF
    We investigate the relationship between finite terms in lambda-letrec, the lambda calculus with letrec, and the infinite lambda terms they express. As there are easy examples of lambda-terms that, intuitively, are not unfoldings of terms in lambda-letrec, we consider the question: How can those infinite lambda terms be characterised that are lamda-letrec-expressible in the sense that they can be obtained as infinite unfoldings of terms in lambda-letrec? For 'observing' infinite lambda-terms through repeated 'experiments' carried out at the head of the term we introduce two rewrite systems (with rewrite relations) -reg-> and -reg+-> that decompose the term, and produce 'generated subterms' in two notions. Thereby the sort of the step can be observed as well as its target, a generated subterm. In both systems there are four sorts of decomposition steps: -lambda-> steps (decomposing a lambda-abstraction), -@0> and -@1> steps (decomposing an application into its function and argument), and respectively, -del-> steps (delimiting the scope of an abstraction, for -reg->), and -S-> (delimiting of scopes, for -reg+->). These steps take place on infinite lambda-terms furnished with a leading prefix of abstractions for gathering previously encountered lambda-abstractions and keeping the generated subterms closed. We call an infinite lambda-term 'regular'/'strongly regular' if its set of -reg-> -reachable / -reg-> -reachable generated subterms is finite. Furthermore, we analyse the binding structure of lambda-terms with the concept of 'binding-capturing chain'. Using these concepts, we answer the question above by providing two characterisations of lambda-letrec-expressibility. For all infinite lambda-terms M, the following statements are equivalent: (i) M is lambda-letrec-expressible; (ii) M is strongly regular; (iii) M is regular, and it only has finite binding-capturing chains.Comment: 79 pages, 25 figure
    corecore